Furosemide increases water content in renal tissue.

نویسندگان

  • Michael Pedersen
  • Zsolt Vajda
  • Hans Stødkilde-Jørgensen
  • Søren Nielsen
  • Jørgen Frøkiaer
چکیده

The present study was designed to evaluate the short-term effects of intravenous administration of furosemide on key functions in the kidney cortex and the outer and inner medulla of rats by using magnetic resonance imaging (MRI). Renal tissue water content, renal tissue oxygenation (in relation to the magnetic resonance spin-spin relaxation rate), the apparent diffusion coefficient (ADC) of water, and volume of renal blood flow were measured. Furosemide administration resulted in an increased water content in all regions of the kidney. In parallel with this, we found a significant reduction in ADC in the cortex (2.7 +/- 0.1 x 10(-3) to 2.3 +/- 0.1 x 10(-3) mm(2)/s; P < 0.01) and in the outer medulla (2.3 +/- 0.1 x 10(-3) to 2.0 +/- 0.1 x 10(-3) mm(2)/s; P < 0.01), indicating that the intra- to extracellular volume fraction of water increased in response to furosemide administration. Furosemide also decreased the blood oxygenation in the cortex (49.1 +/- 2.9 to 40.9 +/- 2.0 s(-1); P < 0.01), outer medulla (41.9 +/- 2.8 to 33.2 +/- 1.6 s(-1); P < 0.01) and in the inner medulla (37.1 +/- 2.9 to 26.7 +/- 1.8 s(-1); P < 0.01), indicating an increased amount of oxygenated Hb in the renal tissue. Moreover, renal blood flow decreased in response to furosemide (6.9 +/- 0.2 to 4.4 +/- 0.2 ml/min; P < 0.001). In conclusion, furosemide administration was associated with increased renal water content, an increase in the intra- to extracellular volume fraction of water, an increased oxygen tension, and a decrease in the renal blood flow. Thus MRI provides an integrated evaluation of changes in renal function, leading to decreased renal water and solute reabsorption in response to furosemide, and, in addition, MRI provides an alternative tool to monitor noninvasively changes at the cellular level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Innovative Methodology Furosemide increases water content in renal tissue

Pedersen M, Vajda Z, Stødkilde-Jørgensen H, Nielsen S, Frøkiær J. Furosemide increases water content in renal tissue. Am J Physiol Renal Physiol 292: F1645–F1651, 2007. First published January 30, 2007; doi:10.1152/ajprenal.00060.2006.—The present study was designed to evaluate the short-term effects of intravenous administration of furosemide on key functions in the kidney cortex and the outer...

متن کامل

Long-term regulation of four renal aquaporins in rats.

The aquaporins are molecular water channels expressed in the kidney and other organs. To investigate long-term regulation of renal expression of these water channels, we carried out immunoblotting studies using membrane fractions from rat renal cortex and medulla. Both 48-h water restriction in Sprague-Dawley rats and 5-day arginine vasopressin (AVP) infusion in Brattleboro rats caused signific...

متن کامل

Mechanism of ascorbic acid enhancement of the bioavailability and diuretic effect of furosemide.

The following possible explanations for the significant increases in the oral bioavailability and the diuretic and natriuretic effects of orally administered furosemide observed when ascorbic acid was coadministered to dogs were investigated: ascorbic acid might enhance the gastrointestinal (GI) absorption of furosemide, might inhibit GI wall metabolism of furosemide, might enhance the reabsorp...

متن کامل

Effects of furosemide on renal calcium handling.

Furosemide is a loop diuretic agent that has been used to treat hypercalcemia because it increases renal calcium excretion. The effect of furosemide on calcium transport molecules in distal tubules has yet to be investigated. We conducted studies to examine the effects of furosemide on renal calcium excretion and expression of calcium transport molecules in mice. Mice were administered with a s...

متن کامل

Sodium and potassium ion transport accelerations in erythrocytes of DOC, DOC-salt, two-kidney, one clip, and spontaneously hypertensive rats. Role of hypokalemia and cell volume.

Sodium (Na+) and potassium (K+) transport by the furosemide-sensitive Na+-K+ transport system, the Na+-K+ pump, and the cation leak(s) were studied in erythrocytes from DOC-water, DOC-salt, two-kidney, one clip (Sprague-Dawley), and spontaneously hypertensive rats (Wistar-Kyoto). Rubidium (Rb+) was used as a tracer for K+. After 4 weeks of DOC-salt hypertension, inward K+ (Rb+) transport by the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 292 5  شماره 

صفحات  -

تاریخ انتشار 2007